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We study the fine-scale statistics of temperature and its derivatives in turbulent
Rayleigh–Bénard convection. Direct numerical simulations are carried out in a
cylindrical cell with unit aspect ratio filled with a fluid with Prandtl number equal to
0.7 for Rayleigh numbers between 107 and 109. The probability density function of the
temperature or its fluctuations is found to be always non-Gaussian. The asymmetry
and strength of deviations from the Gaussian distribution are quantified as a function
of the cell height. The deviations of the temperature fluctuations from the local
isotropy, as measured by the skewness of the vertical derivative of the temperature
fluctuations, decrease in the bulk, but increase in the thermal boundary layer for
growing Rayleigh number, respectively. Similarly to the passive scalar mixing, the
probability density function of the thermal dissipation rate deviates significantly from
a log-normal distribution. The distribution is fitted well by a stretched exponential
form. The tails become more extended with increasing Rayleigh number which
displays an increasing degree of small-scale intermittency of the thermal dissipation
field for both the bulk and the thermal boundary layer. We find that the thermal
dissipation rate due to the temperature fluctuations is not only dominant in the bulk
of the convection cell, but also yields a significant contribution to the total thermal
dissipation in the thermal boundary layer. This is in contrast to the ansatz used in
scaling theories and can explain the differences in the scaling of the total thermal
dissipation rate with respect to the Rayleigh number.

1. Introduction
Convective turbulence which is driven by the action of buoyancy forces appears

in a wide range of geophysical and astrophysical systems as well as in numerous
technological applications such as chip cooling devices or indoor ventilation systems
(Kadanoff 2001). The main focus of convection experiments has been on the precise
quantification of the global turbulent heat transport through the cell which is
measured by the dimensionless Nusselt number Nu as a function of the applied outer
temperature difference, the properties of the working fluid and the geometry (see e.g.
Niemela & Sreenivasan 2003; Funfschilling et al. 2005). The three dependencies are
quantified by dimensionless outer parameters, the Rayleigh number Ra, the Prandtl
number Pr and the aspect ratio Γ . The numbers are defined as

Ra =
αg�T H 3

νκ
, Pr =

ν

κ
, Γ =

D

H
, (1.1)

where α is the thermal expansion coefficient, g the acceleration due to gravity, �T the
outer temperature difference, H the height of the cell and D its diameter. The Prandtl
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number compares the kinematic viscosity of the fluid ν to the thermal diffusivity κ of
the temperature field. The experiments were able to explore a large range of Rayleigh
numbers in the so-called hard turbulence regime from Ra ∼ 107 up to Ra ∼ 1017 in the
case of liquid helium (Niemela et al. 2000). However, most experiments can provide
pointwise measurements of time series of the turbulent fields only (see e.g. du Puits
et al. 2007a and references therein). Two-dimensional cuts through the flow field have
been analysed by combining particle image velocimetry and shadowgraph techniques
(Xi, Lam & Xia 2004).

In contrast, direct numerical simulations (DNS) are currently unable to reach into
the very high Rayleigh-number regime, in particular for aspect ratios Γ � 1. The
advantage of DNS is, however, the fully resolved spatial and temporal information
on the turbulent fields and local mechanisms of heat transfer (Kerr 1996; Verzicco &
Camussi 2003; Hartlep, Tilgner & Busse 2005; Shishkina & Wagner 2006, 2007).

Directly related to the Nusselt number is the mean of the thermal dissipation rate
which is given by (e.g. Grossmann & Lohse 2000)

〈εT 〉V =
Nu√
RaPr

. (1.2)

The thermal dissipation rate field itself measures the magnitude of the temperature
gradient and is defined as

εT (x, t) = κ

(
∂T

∂xi

)2

. (1.3)

Here, x = (x, y, z) is the three-dimensional position vector and xi = x, y or z. Both
equations, (1.2) and (1.3), imply that the statistics of the fluctuating thermal dissipation
field is connected with the local fluctuations of the conductive heat transfer, as given
by the local currents, j (x, t) = −κ(∇T ). The measurement of the thermal dissipation
field – and thus of spatial derivatives – is experimentally challenging, especially in
high-Rayleigh-number turbulence. Experiments can usually provide well-resolved time
derivatives (Belmonte & Libchaber 1996) or temporal increments of the temperature
field (Zhou & Xia 2002). In case of temporal increments in convection, closed forms
of the corresponding probability density functions (PDF) of stretched exponential
type have been constructed successfully by Ching (1991, 1993). For other flows, such
as axisymmetric jets, turbulent channel flows or homogeneous isotropic turbulence,
PDFs of the velocity increments have been constructed as a superposition of Gaussian
distributions (Castaing, Gagne, & Hopfinger 1990) or a product of a Gaussian
random variable and a scale-dependent random multiplier (Chevillard et al. 2006).
In Rayleigh–Bénard convection, time derivatives, however, cannot be translated into
spatial derivatives by a Taylor frozen-flow hypothesis as in pipe or channel flows.
Furthermore, for turbulence in a closed vessel, the concept of homogeneity is limited
to the cell centre only. He, Tong & Xia (2007) were able to measure four temperature
signals close to each other simultaneously to reconstruct temperature gradients. Their
analysis disentangled contributions to the total thermal dissipation coming from
the bulk and boundary layers. Rayleigh numbers Ra ∼ 109 were attained in the
experiments, but the resolution of the gradients remained limited to scales larger than
or equal to the thermal boundary-layer thickness. Direct numerical simulations by
Kerr (1996) and by Shishkina & Wagner (2007) focused on the geometric properties
of thermal plumes, the structures that carry the heat away from the bottom plate.

A detailed statistical analysis of the spatial derivatives of the temperature and
the thermal dissipation field in different regions of the convection cell is thus still
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missing. In particular, knowledge about the strength of the fluctuations around the
mean temperature gradient and their dependence on the Rayleigh number allows
for a validation of predictions by scaling theories, e.g. those by Grossmann & Lohse
(2000). Such analysis is also interesting from the perspective of passive scalar mixing
in turbulence where progress in the understanding of the mechanisms that cause
intermittent fluctuations has been made (Shraiman & Siggia 2000). A first and open
point is to understand the differences between passive and active scalars such as
the temperature in convective turbulence. For the passive scalar case, it is known
that larger amplitudes of the dissipation fields are mostly concentrated on fine scales
(Kushnir, Schumacher & Brandt 2006) and that their statistical study puts rather large
resolution constraints on DNS. This was discussed by Schumacher, Sreenivasan &
Yeung (2005) and Schumacher & Sreenivasan (2005).

In the present work, we provide a detailed height-dependent statistical analysis of
the temperature, its fluctuations and spatial derivatives. Odd-order moments of spatial
derivatives along an imposed outer mean scalar gradient have been used successfully
to quantify deviations from local isotropy in shear flows or for the mixing of scalars in
turbulence (Warhaft 2002; Pumir 1996; Schumacher & Sreenivasan 2003). We adopt
these ideas for the present active scalar case and discuss the dependence of these aniso-
tropy measures on Ra and in different regions of the convection cell. Finally, we study
the statistics of the thermal dissipation rate in the bulk and close to the bottom and top
plates of the cell. The results are then related to findings from the passive scalar dissip-
ation field. Our study is intended to build a bridge between the mixing of passive and
active scalar fields by comparing the statistical properties for both cases. The outline of
this paper is as follows. In § 2, we present the equations of motion and details of the nu-
merical model. Section 3 discusses the statistics of the total temperature, temperature
fluctuations and their gradients. Section 4 considers the statistics and Rayleigh-number
dependence of the thermal dissipation field. Concluding remarks are given in § 5.

2. Equations of motion and numerical model
The equations for an incompressible three-dimensional Navier–Stokes fluid in the

Boussinesq approximation are solved in combination with the advection–diffusion
equation for the temperature field. The system is given by

∂u
∂t

+ (u · ∇)u = −∇p + ν∇2u + αgT ez, (2.1)

∇ · u = 0, (2.2)

∂T

∂t
+ (u · ∇)T = κ∇2T , (2.3)

where p(x, t) is the pressure, u(x, t) the velocity field and T (x, t) the total temperature
field. The latter can be decomposed into a mean profile 〈T 〉A and fluctuations θ ,

T (x, t) = 〈T 〉A(z) + θ(x, t). (2.4)

Two different types of statistical averages are used. The average 〈·〉V is taken over
the whole cell volume and a sequence of statistically independent snapshots. The
average 〈 · 〉A is calculated over the circular plane at a fixed height z and a sequence
of snapshots. We thus always combine spatial and temporal averages. All quantities
are expressed in characteristic units. Length scales are normalized with respect to the
height of the cell, H , velocities with respect to the free-fall velocity, U =

√
αg�T H ,

time scales with respect to H/U . Temperatures are given by 0 � T̃ =(T −Tc)/�T � 1
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Number Ra Pr Γ Nu Re Nφ Nr Nz ΔG Δ̃ δT

1 1 × 107 0.7 1 16.7 682 193 97 128 0.0236 0.0104 0.0300
2 5 × 107 0.7 1 25.9 1444 257 129 160 0.0139 0.0080 0.0193
3 1 × 108 0.7 1 31.7 2036 271 151 200 0.0111 0.0069 0.0158
4 5 × 108 0.7 1 52.4 4530 301 201 256 0.0065 0.0058 0.0095
5 1 × 109 0.7 1 65.0 6255 361 181 310 0.0053 0.0051 0.0077

Table 1. The dimensionless parameters Ra, Pr and Γ for different runs. The Reynolds number
is Re = UrmsH/ν and the Nusselt number is given by (2.7) and (2.8). Urms is an average over
the whole cell volume and a sequence of statistically independent snapshots. All three velocity
components, ur , uφ and uz, are included. The Reynolds number defined in this way follows

Re = 0.33Ra0.475. In addition, we list the corresponding grid resolutions in azimuthal, radial
and vertical directions (Nφ,Nr,Nz), the grid spacing due to Grötzbach (1983), ΔG, and the
maximum of the geometric mean of the grid spacings for the present simulations as given by
(2.6), Δ̃. δT is the thermal boundary-layer thickness, which is determined as H/(2Nu).

where Tc is the (cold) temperature at the top plate. When measured in these units, the
thermal diffusivity becomes κ =1/

√
RaPr and the kinematic viscosity ν =

√
Pr/Ra.

Our studies are conducted for Pr= 0.7 in a cylindrical container of aspect ratio
Γ =1. The top and bottom plates have no-slip boundary conditions, u ≡ 0, at a fixed
temperature. The sidewalls are adiabatic no-slip boundaries, i.e. u ≡ 0 and ∂T /∂r =0.

The equations are discretized on a staggered mesh and solved by a second-order
finite-difference scheme (Verzicco & Orlandi 1996; Verzicco & Camussi 2003). The
pressure field p is determined by a two-dimensional Poisson solver after applying one-
dimensional fast Fourier transform in the azimuthal direction. The time advancement
is done by a third-order Runge–Kutta scheme. The grid spacings are non-equidistant
in the radial and axial directions. In the vertical direction, they correspond to
Tschebycheff collocation points. Table 1 gives the parameters of the present simula-
tions: Ra, Pr, Γ , the resulting Reynolds and Nusselt numbers and the corresponding
grid resolutions. The table also shows the grid spacing due to the resolution criterion
of Grötzbach (1983) (see also Kerr 1996 for a discussion) which is given by

ΔG � πηK = π

(
Pr2

(Nu − 1)Ra

)1/4

, (2.5)

for Pr � 1. The maximum of the geometric mean of the grid spacings in our runs is
also provided by

Δ̃ = max
x=(φ,r,z)

3
√

ΔφΔrΔz . (2.6)

Figure 1 shows the vertical mean temperature profiles taken in three different
ways in the turbulent flow for a Rayleigh number Ra = 108. The standard mean
temperature profile 〈T 〉A(z) is compared with two vertical mean temperature profiles
which are conducted at fixed radial positions and averaged azimuthally, 〈T (r0, φ)〉φ(z).
It can be seen that the slopes of the temperature vary significantly. While the profile
〈T 〉A(z) has almost zero slope at z = 0.5, a destabilizing slope, d〈T 〉φ(z)/dz < 0, is
observed close to the sidewall. Close to the centreline, the situation is reversed, we
observe a stabilizing slope, d〈T 〉φ(z)/dz > 0. Our finding agrees with an experiment
by Brown & Ahlers (2007) and confirms that the assumption of the temperature
drop �T across the thermal boundary layer is a simplification. The presence of a
non-vanishing local mean temperature gradient can have an impact on the statistics
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Figure 1. Mean temperature profiles at Ra =108. The standard profile 〈T 〉A(z) is compared
with two vertical temperature profiles which are calculated at fixed radial positions and
averaged azimuthally. One profile is taken at the sidewall (r0 = R), the other profile is close to
the centreline (r0 = 2Δr ). All mean profiles vary from 0 to 1 along the horizontal axis. Only
the interval [0.4, 0.6] is shown.
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Figure 2. Mean square fluctuations 〈θ2〉A as a function of z/H for Rayleigh numbers: —,
Ra = 107; - - -, 108; · - ·, 109 at an aspect ratio Γ = 1. The inset magnifies the thermal boundary
layer. The solid horizontal lines correspond to δT =H/(2Nu).

of the small-scale temperature fluctuations, similar to the passive scalar case. This
point will be discussed further in § 3.

The thermal boundary layer is resolved with at least 14 lateral grid planes for all
runs. This is indicated in figure 2 where we plot the vertical mean square profiles of
the temperature fluctuations and highlight the (non-equidistant) vertical grid spacing
by the symbols in the inset. The horizontal lines correspond to the thermal boundary-
layer thickness estimated by δT = H/(2Nu), which is always close to the position of
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Figure 3. Probability density functions (PDF) of the dimensionless temperature T̃ . (a) All
data are taken for Ra = 109 and from the whole plane at height z. Heights are z = 0.5δT (◦),
z = δT (�), z = 2δT (∗), z = 4δT (�) and z =0.5H (+). (b) Data are taken at the centreplane
z = 0.5 for different Rayleigh numbers: Ra = 107 (◦), Ra = 108 (�) and Ra = 109 (∗).

the maximum of θ2
rms(z) = 〈θ2〉A(z). All runs were performed for at least 80 large-scale

eddy turnover times in order to gather sufficient statistics. We also verified that the
vertical Nusselt number profile given by

Nu(z) =
〈uzT 〉A − κ∂〈T 〉A/∂z

κ�T /H
, (2.7)

is a constant with a standard deviation of about 1%. The mean value of the Nusselt
number profile,

Nu =
1

H

∫ H

0

Nu(z) dz, (2.8)

follows the scaling law Nu= N0 × Raβ , with N0 = 0.175 and β = 0.283.

3. Temperature and its vertical derivative
3.1. Total temperature and its fluctuations

Figure 3 shows the probability density functions (PDF) of the dimensionless temper-
ature T̃ at different heights from the bottom plate and as a function of the Rayleigh
number, respectively. The findings are in agreement with Siggia (1994) and Kerr
(1996). As expected, the PDFs in figure 3(a) become increasingly symmetric toward
the centre of the convection cell. This height-dependent asymmetry can be measured
alternatively by the skewness of the temperature fluctuations, θ , which is given by

Sθ (z) =
〈θ3〉A

〈θ2〉3/2
A

. (3.1)

The graphs are shown in figure 4(a). A small skewness around δT implies that rising
and falling plumes are observed at the edge of the bottom and top thermal boundary
layers. Simultaneously, the colder and hotter pockets of temperature are generated
in the vicinity of the thermal plumes which detach from the thermal boundary layer.
This is a consequence of the incompressibility of the fluid as investigated in more



Fine-scale statistics in convective turbulence 19

1.0(a)

0.8

0.6

0.4

0.2

–1 0

Sθ(z) Fθ(z)

1 1 3 5 7
0

z
H

1.0(b)

0.8

0.6

0.4

0.2

0

Figure 4. Height dependence of (a) the skewness and (b) flatness of the temperature
fluctuations. Data are given for Rayleigh numbers: ·–·, Ra =107; - - -, 108; —, 109. The
symbols in the skewness curve of Ra = 109 indicate the distance from the wall at which the
PDFs in figure 3(a) are plotted.

detail in the Lagrangian frame of reference by Schumacher (2008). Up to a height
of z/H ≈ 0.1, the skewness increases monotonically before it declines to zero at
the cell centreplane. The plots show that the maximum value of skewness increases
with increasing Rayleigh number. A large positive value of the skewness close to
the bottom plate means that rising plumes with T (z) > 〈T 〉A(z) are dominant in this
region of the convection cell. This is exactly the region in which a cusp is forming
at T̃ =0.5 in the PDF (see figure 3a).

The distribution of the temperature in the centreplane (z = 0.5) of the cell as a
function of the Rayleigh number is shown in figure 3(b). The profiles are clearly non-
Gaussian for all three Rayleigh numbers. The support of the PDF becomes narrower
with increasing Ra. The PDF for the fluctuations θ has the same shape in the centre-
plane. We found that the PDFs of θ for the two larger Rayleigh numbers collapse when
the temperature fluctuation is normalized by the corresponding root-mean-square
value, θrms , at z = 0.5. The PDF for Ra = 107 has slightly smaller tails. The magnitude
of the deviations from Gaussianity can be measured by the flatness which is given by

Fθ (z) =
〈θ4〉A

〈θ2〉2
A

. (3.2)

Figure 4(b) shows the vertical profiles of the flatness for the three Rayleigh numbers.
The non-Gaussianity, i.e. a flatness larger than 3, is present for all three Ra. This
is in agreement with other studies such as by Heslot, Castaing & Libchaber (1987),
Castaing et al. (1989) or Ching (1991). It can also be observed that the flatness value
levels off in the cell centre for the two larger Rayleigh numbers. This could indicate
that the transition to the so-called hard turbulence regime of convection has been
completed. Dimotakis (2005) discussed a mixing transition for passive scalars at Re ∼
104. Above this threshold, a weaker Re dependence was predicted. A similar behaviour
could be the reason for our observation. All flatness profiles have a minimum right
above the thermal boundary layer. The slight asymmetry of the profile at Ra =109 is
due to limitations in the statistical analysis. Even a longer time advancement and 140
statistically independent snapshots were not sufficient to obtain a symmetric profile
since this analysis of the higher-order moments is done plane by plane.
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Figure 5. Vertical profiles of the probability of uzθ > 0 for three different Rayleigh numbers.

As already seen, the non-Gaussian PDF of the total temperature and the temperat-
ure fluctuations in the cell centre is a robust feature in thermal convection. It has been
reported in experiments starting with Heslot et al. (1987) and Castaing et al. (1989). An
almost exponential shape was emphasized by Yakhot (1989) on the basis of a hierarchy
of moment equations for the temperature fluctuations. These ideas have been extended
by Ching (1993) . Yakhot suggested that this form prevails even for moderate Rayleigh
numbers (which implies moderate Reynolds numbers), whenever regions with uzθ > 0
are dominant. A correlation between the vertical velocity and temperature fluctuation
is a fingerprint of a local blob of heat transferred through the cell. Inspection of
our data shows that larger regions with uzθ > 0 are present everywhere in the cell,
even in the centre where coherent plumes are absent. This is shown in figure 5
where we plot the vertical dependence of the probability P (uzθ > 0) for three different
Rayleigh numbers. It can be clearly seen that the probability decreases with increasing
Rayleigh number, but remains significantly larger than 0.5 for all three cases. The
plot is another manifestation of the net transfer of heat through the cell.

The passive scalar turns out to be more sensitive to a particular driving and the
Reynolds number of the advecting flow. When a mean scalar gradient is absent, the
statistics is close to Gaussian or sub-Gaussian such as in Mydlarski & Warhaft (1998)
or Watanabe & Gotoh (2004). In the case of a non-vanishing mean scalar gradient,
Pumir, Shraiman & Siggia (1991) suggested an exponentially distributed passive scalar
as a generic feature, based on a simple one-dimensional random advection model.
This was confirmed experimentally for sufficiently high Reynolds numbers (Gollub
et al. 1991; Jayesh & Warhaft 1991, 1992). However, sub-Gaussian distributions
of θ have also been found for this case by Overholt & Pope (1996), Ferchichi &
Tavoularis (2002) and Schumacher & Sreenivasan (2005). Experiments by Gylfason
& Warhaft (2004) detected that the statistics depends on the particular driving of the
turbulent flow. While an active grid caused sub-Gaussian fluctuations, a fine static
grid caused super-Gaussian passive scalar distributions. Furthermore, the deviations
from Gaussian distributions decreased with increasing downstream distance in their
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Figure 6. Probability density functions (PDF) of vertical derivative of the temperature, ∂T̃ /∂z,
taken in the same planes as in figure 3(a). All data are again for Ra = 109. Heights are z = 0.5δT

(◦), z = δT (�), z = 2δT (∗), z = 4δT (�) and z = 0.5H (+).

experiments. The two findings imply that the ratio of the integral scales to the system
scale is important. This is a point which must be addressed in more detail.

3.2. Vertical derivative of temperature fluctuations

An important question in turbulent convection is whether the fluctuations of the
temperature field in the bulk can be considered as being locally isotropic. In order
to shed light on this point, we adopt an approach that has been used successfully for
passive scalars with a mean scalar gradient (Warhaft 2000). As we have seen in § 2,
the local mean temperature gradient can deviate from zero while the overall profile
sums up to a mean temperature gradient which is almost zero (see figure 1). Following
Brown & Ahlers (2007), we define a ratio Ξ that relates a difference of azimuthally
averaged mean temperatures at fixed radial distance r0 to the total temperature drop.
It is given by

Ξ (r0) =
〈T (r0)〉φ(z = 3H/4) − 〈T (r0)〉φ(z = H/4)

�T
. (3.3)

Close to the sidewall, we obtain Ξ (R) = −0.12 for Ra =107, Ξ (R) = −0.07 for
Ra = 108 and Ξ (R) = −0.04 for Ra = 109. This large slope is mainly due to the
rising and falling plumes. At the centreline, it follows Ξ (2Δr ) = 0.015 for Ra = 107,
Ξ (2Δr ) = 0.009 for Ra = 108 and Ξ (2Δr ) = 0.006 for Ra =109. Although decreasing
with increasing Rayleigh number for both cases, their magnitude is not negligible. We
observe that local mean temperature gradients are present. This supports the idea of
conducting an analysis similar to passive scalar turbulence.

The statistics of the vertical derivative of the temperature, ∂T̃ /∂z, is shown in
figure 6. The PDFs are analysed at the same heights as those for the temperature
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Figure 7. Skewness of the vertical temperature derivative as a function of the Rayleigh
number Ra. (a) Data analysis is performed in the centre of the cell for points in
V = {r, θ, z| 0.4H � z � 0.6H}. Data are displayed in double-logarithmic axes. In addition, the
decay laws of the skewness with respect to Ra are shown which would be in line with a return
to isotropy (dashed lines). (b) Analysis is conducted in the thermal boundary layer for points
in V = {r, θ, z| 0 � z � δT }. Data are displayed in a logarithmic–linear diagram.

in figure 3(a). A sharp decrease of the PDF at 0.5δT is present in the vicinity of
∂T̃ /∂z =0, simply because positive vertical derivatives are very improbable close to
the bottom plate. With increasing distance from the plate, the support of the PDF
decreases. A negative skewness of all distributions can be observed, which implies
preferential derivatives along the mean negative temperature gradient. Recall also
that a turbulent field is thought to be perfectly locally isotropic when all odd-order
derivative moments are exactly zero. Therefore, the derivative skewness with respect
to the temperature fluctuations θ , defined as

S∂zθ (z) =
〈(∂θ/∂z)3〉V

〈(∂θ/∂z)2〉3/2
V

, (3.4)

is presented here. It measures deviations from the local isotropy at the smaller scales
of convective turbulence. Figure 7 shows that such deviations are indeed present in
different regions of the cylindrical domain. With increasing Rayleigh number and thus
increasing Reynolds number, the derivative skewness S∂zθ (z) decreases in magnitude
in the centre region (see figure 7(a)). Following the original idea on the return to local
isotropy in a simple shear flow (Lumley 1967) and its adaption to the passive scalar
case (Warhaft 2000), a return would require a rather rapid decay law of the skewness
with respect to the Taylor microscale Reynolds number Rλ, i.e. |S∂zθ | ∼ R−1

λ . This was
not found in the passive scalar case for Schmidt numbers around unity (Warhaft
2000). Given the scaling dependence of the Reynolds number with respect to the
Rayleigh number, which will be discussed in more detail in § 4.1, and the relation
Re ∼ R2

λ , a return to local isotropy in convection would require a decay law which is
given by

|S∂zθ | ∼ Ra−ζ/2, (3.5)

for a fixed Pr. Here, ζ is the scaling exponent for Re ∼ Raζ relation, which was found
to vary between ζ = 0.43 and 0.49 in experiments (see § 4.1). Figure 7(a) indicates that
our data follow such a decay law for the larger Rayleigh numbers. This is in line
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with the observation that the local mean gradients in the bulk decrease in magnitude
with increasing Ra. The mean temperature gradient still causes ramps and cliffs of
the temperature and thus a non-vanishing derivative skewness, but its impact seems
to be weaker compared to a passive scalar which lacks a return to isotropy. A larger
range of Rayleigh numbers and the analysis of the hyperskewness would allow us to
draw a firm conclusion.

The opposite trend with respect to the Rayleigh number can be observed in the
thermal boundary layer where the skewness S∂zθ (z) is increasing in magnitude with
Rayleigh number Ra (see figure 7b). Figure 6 shows that, in particular, the PDFs
in the boundary layer are strongly skewed towards negative derivatives. This is
because the heat transfer is mostly contributed by the second term of (2.7) there,
and the fluctuations about the mean are consequently dominated by the conductive
contributions jz = −κ(∂θ/∂z). We will come back to this point in the next section
when discussing the height dependence of the thermal dissipation.

4. Thermal dissipation rate
4.1. Vertical profiles and Rayleigh-number scaling

Figure 8 represents the isosurface plots of a snapshot of T (figure 8a) and of εT

(figure 8b) at Ra =109. We recognize the ridges in the temperature isosurface which
correspond to the plumes that are detached from the bottom and top boundary
layers. Associated with the rising and descending plumes are larger amplitudes of
the thermal dissipation field which can be observed in figure 8(b), similar to findings
by Kerr (1996) or Shishkina & Wagner (2007). The pattern of ridges (or stems)
in figure 8(a) is recaptured almost one-to-one in figure 8(b). The isosurface plot in
figure 8(b) indicates also that the local maxima of the thermal dissipation field εT are
dominantly found close to both plates and not in the cell centre.

In order to quantify this vertical dependence more precisely, we decompose
the thermal dissipation rate field into contributions which result from the mean
temperature profile and the temperature fluctuations. With (1.3), it follows that

εT (x, t) = κ

[(
∂〈T 〉A

∂z

)2

+ 2
∂〈T 〉A

∂z

∂θ

∂z
+ (∇θ)2

]
, (4.1)

= ε〈T 〉(z) + 2κ
∂〈T 〉A

∂z

∂θ

∂z
+ εθ (x, t). (4.2)

The mixed term vanishes after averaging over planes at fixed height z and thus

〈εT 〉A(z) = ε〈T 〉(z) + 〈εθ〉A(z) . (4.3)

Figure 9 plots the vertical profiles of both contributions to the total thermal
dissipation rate for Rayleigh numbers Ra = 107 (figure 9a, c) and 109 (figure 9b, d). All
values of the thermal dissipation fields are given in units of the corresponding ensemble
mean, Nu/

√
RaPr (see also (1.2)). The contribution of the mean temperature profile,

ε〈T 〉, is dominant in the thermal boundary layer and decreases rapidly to almost zero
toward the cell centre (see figure 9a, b). This mean profile contribution increases with
increasing Rayleigh number since the scale across which the significant temperature
variation appears, δT , becomes smaller. Conversely, the thermal dissipation rate due
to the temperature fluctuations is dominant in the bulk and exceeds the mean profile
contribution by more than 3 orders of magnitude there (not shown). As displayed
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(a)

(b)

Figure 8. Snapshots of the turbulent convection at Ra = 109. (a) Isosurfaces of the tempe-
rature T are taken at 0.7 (bottom plate) and 0.3 (top plate), respectively. (b) The corresponding
thermal dissipation field εT is shown at the level 10〈εT 〉V .
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Figure 9. Vertical profiles of the two contributions to the total thermal dissipation rate which
follow from the mean temperature and the temperature fluctuations (see (4.2)). Data are for
Rayleigh number Ra = 107 (a, c) and Ra = 109 (b, d). The three different terms have been

normalized by the ensemble average of the total dissipation rate 〈εT 〉V = Nu/
√

RaPr. (c, d)
The vertical profiles of the total thermal dissipation rate are replotted in order to demonstrate
that they decrease significantly below the global ensemble averages.

in figure 9(c, d) for both Rayleigh numbers, the total dissipation remains significantly
below Nu/

√
RaPr in the cell centre.

From (1.2), and the scaling relation Nu ∼ Raβ , the Rayleigh-number dependence of
the ensemble average 〈εT 〉V yields

〈εT 〉V ∼ Raβ−1/2 = Raγ , (4.4)

which gives an exponent γ = −0.217 in our simulations. This global scaling can be
refined for different subvolumes of the cylindrical domain. Well in the centre, we
define the bulk dissipation as

〈εT 〉Bulk = κ

〈 (
∂T

∂xi

)2 〉
Bulk

for x = (x, y, 0.4 � z � 0.6) . (4.5)

The thermal dissipation in the boundary layer is given by

〈εT 〉BL = κ

〈(
∂T

∂xi

)2 〉
BL

for x = (x, y, z � δT ) . (4.6)
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In line with the definitions of averages in § 2, we combine again an average over many
realizations of the turbulent fields and a volume average which is taken now over
the subvolumes BL and Bulk as defined in (4.5) and (4.6), respectively. Following
Grossmann & Lohse (2000) (see their equation (2.15)), we can estimate the thermal
dissipation in the thermal boundary layer by assuming that it is due to the mean
temperature drop across δT only and that 〈εT 〉BL ≈ ε〈T 〉. This leads to

〈εT 〉BL ≈ κ

(
�T

2δT

)2
δT

H
∼ κ

(
�T

H

)2

Nu ∼ Raβ. (4.7)

The factor δT /H stands for the fraction of the total volume that is occupied by the
boundary layer. The last step in (4.7) holds if κ is a constant. For Rayleigh numbers
between 5 × 107 and 109, our DNS give a scaling with respect to Rayleigh number of

〈εT 〉BL ≈ 0.016 × Ra0.10. (4.8)

This exponent is significantly smaller than the predictions by the scaling theories,
β = 2/7 or 1/3. We conclude that (4.7) is not capturing the significant contribution
from 〈εθ〉BL which can also be seen in figure 9. In addition, we find that 〈εθ〉BL

displays almost the same scaling with Rayleigh number as 〈εT 〉BL in our direct
numerical simulations.

In the bulk of the cylindrical cell, the thermal dissipation rate is due to temperature
fluctuations only and can be estimated by (see equation (2.12) in Grossmann & Lohse
2000)

〈εT 〉Bulk ≈ 〈εθ〉Bulk ∼ U (�T )2

H
= κ

(�T )2

H 2
RePr, (4.9)

Further explanation requires knowledge of Re(Ra, Pr). Corresponding to experi-
ments, an anomalous scaling dependence of the Reynolds number on the Rayleigh
number is found, i.e. deviations from a scaling exponent of ζ = 0.5 (Grossmann
& Lohse 2002; Brown, Funfschilling & Ahlers 2007). Furthermore, the definition
of the Reynolds number, especially the choice of the characteristic velocity, leads
to additional variations in the exponents. In summary, the range of exponents of
Re ∼ Raζ is found to be between ζ = 0.43 and 0.49. It follows thus from (4.9) that

〈εT 〉Bulk ∼ Raζ , (4.10)

for a fixed Prandtl number, as in the present study, with an exponent ζ > 0. However,
our numerical simulations lead to

〈εT 〉Bulk ≈ 0.32 × Ra−0.38, (4.11)

which comes close to the experimental findings by He et al. (2007) and exhibits the
reported trend of Verzicco & Camussi (2003). It does not vary significantly if the
bulk volume fraction is increased in the analysis. For example, an exponent of −0.34
in (4.11) was obtained in the region 0.2 � z � 0.8. The Rayleigh-number range, for
which this least squares fit was taken, is between 5×106 and 109. We conclude that the
scaling exponent, which is rather robust with respect to changes of the volume fraction,
has the opposite sign in contrast to the scaling based on the estimate by Grossmann &
Lohse (2000). The reason for this discrepancy could be that the dimensionally correct
ansatz U (�T )2/H may not be appropriate for the thermal dissipation rate. Similar
to fluid turbulence, the Rayleigh numbers (and therefore the Reynolds numbers)
are still too small to reach the regime where the thermal dissipation rate given
in units of U (�T )2/H is a constant. This is known as the dissipation anomaly
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Figure 10. Tails of the PDFs of the thermal dissipation rates of the temperature fluctuations,
εθ , in the bulk. Planes with z ∈ [4δT ,H − 4δT ] are included. The tails have been fitted by
stretched exponentials as given by (4.12) with the fit coefficients and exponents as indicated
in the figure. The inset magnifies the PDFs for the smallest dissipation rate amplitudes in
log–log scale. The data are normalized with respect to the r.m.s. value calculated over the
whole volume and a sequence of statistically independent snapshots.

(Donzis, Sreenivasan & Yeung 2005). Both 〈εT 〉Bulk/(UrmsT
2
rms/H ) and 〈εT 〉Bulk/

(Urms�T 2/H ) still decrease with increasing Ra for our data record (Urms is defined in
the caption of table 1).

4.2. Stretched exponential behaviour in the tails

The mismatch of the Rayleigh-number scaling with the predictions by Grossmann
& Lohse (2000) suggests that strong fluctuations of the thermal dissipation were
not taken into account in the scaling. We discuss therefore the statistics of εθ in this
section. Figure 10 shows the PDF of the dissipation rate of temperature fluctuations
εθ in the bulk. The analysis is conducted in planes in the range z ∈ [4δT , H − 4δT ]. In
correspondence with the passive scalar case (Overholt & Pope 1996; Schumacher &
Sreenivasan 2005), we fit a stretched exponential to the fraction of the PDF which
extends from the most probable amplitude (see the inset of figure 10) to the end of
the tail. We define X = εθ/(εθ )rms and X∗ = X − Xmp , with Xmp is the abscissa of the
most probable (mp) value. Data are fitted to

p(X∗) =
C√
X∗

exp(−mX∗ α). (4.12)

Similar to the passive scalar case, we observe fatter tails with increasing Rayleigh
number (and therefore with increasing Reynolds number). This is in line with an
increasing degree of small-scale intermittency of the thermal dissipation rate field.
Overholt & Pope (1996) and Schumacher & Sreenivasan (2005) have conducted a
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Figure 11. PDFs of εθ at the cell centre (z =0.5H ) normalized with respect to (εθ )rms , which is
also taken at z = 0.5H . Present DNS data at Ra =109 (·) are compared with the experimental
results (figure 4) of He et al. (2007) for Ra = 9.6×108 and Pr = 5.4 (—). Statistics are gathered
again over a sequence of independent snapshots. Data are more scattered in the far tail
compared to figure 10.

similar analysis for the passive scalar dissipation rate in a homogeneous isotropic
turbulent flow. There, a minimal exponent α = 1/3 can be derived analytically in the
limit of a very large Péclet number. The scalar is then advected in a flow which is
white in time (Chertkov, Falkovich & Kolokolov 1998; Gamba & Kolokolov 1999).
The advection of a passive scalar in a Navier–Stokes flow always resulted in sparser
tails, i.e. α � 1/3 (Yeung, Donzis & Sreenivasan 2005). Our present analysis indicates
that this threshold is also approached for the hard-turbulence regime of convection.

Figure 11 replots our data in the centreplane for Ra = 109 in units of the r.m.s.
value of thermal dissipation (εθ )rms in order to compare them with the measurements
by He et al. (2007). A slightly sparser tail in the experiments is observed. On the one
hand, the reason for this difference might be due to the improved resolution of the
temperature gradient in our simulations, which was not possible in the experiment, as
mentioned before. On the other hand, the Prandtl number (Pr = 5.4) was almost an
order of magnitude larger in the experiment. An increasing Prandtl number reduces
the thermal boundary-layer thickness and can cause less plume mixing in the bulk.
Less pronounced plumes will cause smaller amplitudes of the thermal dissipation. Such
a trend with the Prandtl number would differ from passive scalar turbulence, where
the tails of the PDF of εθ become fatter with increasing Prandtl (or Schmidt) number
at a given Reynolds number of the advecting flow (Schumacher & Sreenivasan 2005).
There, a less diffusive scalar field generates sharper gradients. It remains open which
of those two effects is more dominant. Further simulations are required to study the
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Figure 12. Tails of the PDFs of εθ close to the bottom plate (z ∈ [0, 4δT ]) for different Ra.
The data are normalized with respect to the r.m.s. value calculated over the whole volume and
a sequence of statistically independent snapshots.

dependence of the temperature gradient statistics on the Prandtl number in thermal
convection.

When repeating the analysis for the part of the volume (z ∈ [0, 4δT ]) that has been
excluded before, distributions as shown in figure 12 result. It is observed that the
amplitudes of the dissipation increase by an order of magnitude for the largest Ra

compared to figure 10. The fatter tails for the boundary-layer data are in line with
the analysis of the vertical plane averaged profiles (see figure 9). The fluctuations of
the thermal dissipation rate increase with increasing Ra.

4.3. Deviations from log-normality

The intermittent nature of the thermal dissipation field leads to deviations from log-
normality, as can be seen in figure 13 where the same data set has been studied as
in figure 10. In order to highlight the differences in PDFs, we represent the data in
linear–linear and linear–logarithmic axes, respectively. It can be seen that neither the
core nor both tails of the PDF fit perfectly. This is similar to the passive scalar mixing.
Small-amplitude tails are fatter than the log-normal curve while large-amplitude tails
remain sparser (Ferchichi & Tavoularis 2002; Schumacher & Sreenivasan 2005). The
trend of the data with Rayleigh numbers between 107 and 109 suggests a very slow
convergence towards the log-normality. The repetition of the analysis in the vicinity
of the thermal boundary layers, i.e. for the same data set as in figure 12, reveals even
stronger deviations (see figure 14). For the large-amplitude tail, a bump is observed.
A similar feature has been reported by Kaczorowski & Wagner (2007). Our analysis
suggests that this particular feature is due to the boundary-layer dynamics. The bump
in the distribution remains also when the PDF is analysed for the whole cell and not
for a particular subvolume.
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Figure 13. Replot of the same data as for figure 10 in log–normal coordinates. μ is the mean
of ln(εθ ) and σ is the corresponding standard deviation. The solid line indicates a log–normal
distribution. (a) Linear–linear plot. (b) Linear–logarithmic plot of the same data.
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Figure 14. Replot of the same data as for figure 12 in log–normal coordinates. Line and
symbol styles are the same as in figure 13.

4.4. Conditional mean thermal dissipation

Deviations from the Gaussian distributions of the temperature fluctuation are also
manifested in the conditional mean thermal dissipation. It is known that a conditional
mean scalar dissipation is constant for a Gaussian scalar field, i.e. independent with
respect to the scalar amplitude (see e.g. Overholt & Pope 1996). The mean is defined
as

〈εθ |θ(x, t) = ψ〉 =

∫ ∞

0

dεθ εθ

p(εθ , θ(x, t) = ψ)

p(θ(x, t) = ψ)
, (4.13)

where p(εθ , θ) is the joint PDF of the thermal dissipation rate and the temperature
fluctuation. Figure 15 displays clearly the V-shape for the conditional mean for
temperature fluctuation values around θ/θrms = 0. This is consistent with the deviations
from Gaussianity, which were detected for the distributions of the temperature field.
At larger magnitudes of θ , the graphs reach a maximum before decreasing to zero
since the support of the joint PDF and the temperature PDF is bounded. The
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Figure 15. Conditional mean dissipation in the bulk (between z ∈ [0, 4δT ] and z ∈ [H − 4δT ,
H ]) as a function of the Rayleigh number. The r.m.s. of θ has been taken over the whole
volume and a sequence of snapshots.

V-shape is more pronounced with increasing Rayleigh number which is due to the
higher thermal dissipation amplitudes observable in the flow (see figure 10). Our
results agree with the findings of Jayesh & Warhaft (1992).

5. Conclusions
We have presented a detailed numerical study of the statistics of the temperature

fluctuations and their gradients in turbulent convection. The resolution constraints
limited the study to moderate Rayleigh numbers between 107 and 109. We compared
the fine-scale structure of the active temperature field to that of the passive scalar field,
far away from the boundaries. In contrast to the passive scalar case, the temperature
statistics are always non-Gaussian, with a probability density function close to
exponential in the bulk. Non-Gaussianity holds in all regions of the convection cell
and for all mentioned Rayleigh numbers. Deviations in temperature fluctuations from
the Gaussian distribution have also been confirmed by the V-shaped conditional mean
dissipation. For the passive scalar fluctuations, the statistics depends on the mechanism
that sustains the fluctuations and on the particular ratios of outer turbulence length
scales. Super-Gaussian, Gaussian or weakly sub-Gaussian distributions have been
observed there in the past. Although the statistics of the temperature can differ from
the passive scalar, the statistics of the spatial derivatives and dissipation rates behave
qualitatively similarly.

The probability density function of the thermal dissipation rate in the bulk is fitted
well with a stretched exponential. The tails extend to larger amplitudes with increasing
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Rayleigh number. This is a clear fingerprint of a stronger small-scale intermittency.
Thermal dissipation field is always more intermittent in the boundary layer than
the bulk of the convection cell. This is indicated by the fatter tail of the PDF. All
distributions showed clear deviations from the log-normality in the whole range of
dissipation values.

Motivated by similar studies in passive scalar turbulence and by our detection
of locally varying mean temperature profiles, the deviations from locally isotropic
temperature fluctuations are quantified by the third-order vertical derivative moments
as a function of the Rayleigh number. We found that the deviations from the local
isotropy grow with increasing Ra in the boundary layer. In the bulk, the derivative
skewness is found to decrease. Our data exhibit a return to isotropy trend (Lumley
1967) when translating the original Reynolds-number dependence of the skewness
into a Rayleigh-number dependence for the convection case. This is in contrast
to the passive scalar case which does not show such trend (Warhaft 2000). The
observed return might be due to the small amplitudes that the local mean temperature
gradients possess. The vertical profiles of the plane-averaged thermal dissipation
show furthermore that an increasing fraction is concentrated in an ever thinner
boundary layer with growing Ra. Finally, we demonstrate that the contribution of
the temperature fluctuations to the total thermal dissipation in the thermal boundary
layer is significant and cannot be neglected. This aspect is not included in the scaling
of the thermal dissipation rate with respect to the Rayleigh number and can explain
why the present trends of the total thermal dissipation with respect to the Rayleigh
number differ in comparison to the scaling theory by Grossmann & Lohse (2000).

Two aspects will be addressed in our future work on this subject. First, an extension
to larger aspect ratios and higher Rayleigh numbers is desirable. It is known from
experiments, such as by du Puits et al. (2007b), that the large-scale motion is sensitive
to the aspect ratio. A rearrangement of the large-scale flow patterns will consequently
affect the statistics of various quantities. Secondly, the direct link between the observed
statistics and the local structures in the boundary layer and its vicinity is necessary.
The first steps have been taken in Shishkina & Wagner (2007) and Zhou et al.
(2007). Our investigations on both aspects have started recently and will be discussed
elsewhere.
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